The Co-Chaperone Hch1 Regulates Hsp90 Function Differently than Its Homologue Aha1 and Confers Sensitivity to Yeast to the Hsp90 Inhibitor NVP-AUY922

نویسندگان

  • Heather Armstrong
  • Annemarie Wolmarans
  • Rebecca Mercier
  • BaoChan Mai
  • Paul LaPointe
چکیده

Hsp90 is a dimeric ATPase responsible for the activation or maturation of a specific set of substrate proteins termed 'clients'. This molecular chaperone acts in the context of a structurally dynamic and highly regulated cycle involving ATP, co-chaperone proteins and clients. Co-chaperone proteins regulate conformational transitions that may be impaired in mutant forms of Hsp90. We report here that the in vivo impairment of commonly studied Hsp90 variants harbouring the G313S or A587T mutation are exacerbated by the co-chaperone Hch1p. Deletion of HCH1, but not AHA1, mitigates the temperature sensitive phenotype and high sensitivity to Hsp90 inhibitor drugs observed in Saccharomyces cerevisiae that express either of these two Hsp90 variants. Moreover, the deletion of HCH1 results in high resistance to Hsp90 inhibitors in yeast that express wildtype Hsp90. Conversely, the overexpression of Hch1p greatly increases sensitivity to Hsp90 inhibition in yeast expressing wildtype Hsp90. We conclude that despite the similarity between these two co-chaperones, Hch1p and Aha1p regulate Hsp90 function in distinct ways and likely independent of their roles as ATPase stimulators. We further conclude that Hch1p plays a critical role in regulating Hsp90 inhibitor drug sensitivity in yeast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aha1 binds to the middle domain of Hsp90, contributes to client protein activation, and stimulates the ATPase activity of the molecular chaperone.

The ATP-dependent molecular chaperone Hsp90 is an essential and abundant stress protein in the eukaryotic cytosol that cooperates with a cohort of cofactors/cochaperones to fulfill its cellular tasks. We have identified Aha1 (activator of Hsp90 ATPase) and its relative Hch1 (high copy Hsp90 suppressor) as binding partners of Hsp90 in Saccharomyces cerevisiae. By using genetic and biochemical ap...

متن کامل

An Hsp90 co-chaperone protein in yeast is functionally replaced by site-specific posttranslational modification in humans

Heat shock protein 90 (Hsp90) is an essential eukaryotic molecular chaperone. To properly chaperone its clientele, Hsp90 proceeds through an ATP-dependent conformational cycle influenced by posttranslational modifications (PTMs) and assisted by a number of co-chaperone proteins. Although Hsp90 conformational changes in solution have been well-studied, regulation of these complex dynamics in cel...

متن کامل

Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery.

Hsp90 is a molecular chaperone essential for the activation and assembly of many key eukaryotic signalling and regulatory proteins. Hsp90 is assisted and regulated by co-chaperones that participate in an ordered series of dynamic multiprotein complexes, linked to Hsp90s conformationally coupled ATPase cycle. The co-chaperones Aha1 and Hch1 bind to Hsp90 and stimulate its ATPase activity. Bioche...

متن کامل

The Hsp90 inhibitor NVP-AUY922-AG inhibits NF-κB signaling, overcomes microenvironmental cytoprotection and is highly synergistic with fludarabine in primary CLL cells

Heat shock protein 90 (Hsp90) is a molecular chaperone required for the stability and function of multiple over-expressed signaling proteins that promote growth and survival in cancer cells. Chronic lymphocytic leukaemia (CLL) is characterized by increased expression of several Hsp90 client proteins making it a potentially susceptible to Hsp90 inhibition. In this study we showed that the novel ...

متن کامل

Antitumor effect of novel HSP90 inhibitor NVP-AUY922 against oral squamous cell carcinoma.

Heat-shock protein 90 (HSP90) is a major cellular chaperone protein. HSP90 supports the correct conformation, stabilization, activation, and localization of 'client' oncoproteins, many of which are involved in tumor progression. Therefore, the use of HSP90 inhibitors has become a new strategy in antitumor therapy. However, the effects of an HSP90 inhibitor on oral squamous cell carcinoma are st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012